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ABSTRACT

The Extended Corresponding States (ECS) model has been extensively studied for

representing the thermodynamic surface of pure fluids and mixtures in the ( )Ta R ,ρ

form and the most advanced version is currently the one for HFC [1], but the shape

factors ( )T,ρϑ  and ( )T,ρϕ  have yet to be determined as analytical functions for the

whole PρT surface of a pure fluid.

For a sample of pure halocarbons (HA), this work aims to solve the fundamental

problem of determining the individual shape functions on the entire PρT domain

through an innovative predictive procedure using a density model requiring only a

single saturated liquid density input. An original algorithm using artificial neural

networks (ANNs) enables the determination of the ( )T,ρϑ  and ( )T,ρϕ  functions from

a priori knowledge of their functional forms. The proposed algorithm focuses on the

determination of the residual Helmholtz energy ( )Ta R ,ρ  for each fluid, subsequently

allowing any other thermodynamic residual function to be calculated through the first

and second derivatives of temperature and density. For each fluid studied, the model has

been validated for residual functions against the same functions coming from highly

accurate DEoS. The prediction accuracies reach AAD values ranging from 0.3 to 7.8%,

spanning from vapor and liquid regions to supercritical conditions, while the

corresponding results of the ECS method range from 0.54 to 20%.

KEY WORDS: Density, Extended Corresponding States, Feed forward neural

networks, Fundamental equation of state, Helmholtz energy equation, Refrigerants,

Residual functions.



1. INTRODUCTION

The theoretical background for the Corresponding States is based on a similitude

hypothesis of the potential energies for the components of a family of fluids [2,3]. The

fluids pertaining to a family meeting this requirement are considered to share a

condition of conformality, which is intended as a potential energies similitude. This

implies the similitude of the ( )T,,P ρψ  surfaces of each fluid, where P is the pressure,

ρ  the density and T the temperature. Thus, if two fluids i and j pertain to a conformal

family, then:
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from which it follows that an f function:

( )rrr V,TfP = (2)

is the same for all the conformal fluids. In eqs. (1,2) V is the volume, while the

superscript c and the subscript r indicate the critical and reduced values, respectively.

Then all the derived residual state functions are conformal, too. In particular, it has

been demonstrated through further developments of statistical mechanics theory [1,4]

that the fundamental conformality condition can be reduced to the following relation:
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where Ra  is the residual Helmholtz free energy. It emerged that this relation is not

satisfied even for the noble gases and the fluids considered here. A correction to this

model is consequently needed, the detail of which is shown later on. Nonetheless, a

knowledge of the ( )T,,P ρψ  surfaces is now available, with the highest possible



accuracy, from DEoS in the form developed following the Schmidt-Wagner technique

[6]. The fluids considered in this study are indicated in Table 1, together with the limits

of validity of their DEoS. First of all, two grids in the independent Tr, Pr variables were

set up with the steps indicated in Table 2 for ANN training and validation, respectively.

The training set counts approximately 600 points in all, while the validation set is

composed of more than 5000 points. The ranges of Tr and Pr were then selected for each

fluid in order to observe the single range of validity for the DEoS, Table 1.

2. ECS IDENTITIES

According to classical ECS theory, two fluids are considered conformal if they obey

the following condition:

( ) ( )00
R

0jj
R

j T,aT,a ρρ = (4)

in which subscripts 0 and j stand for the reference fluid and the fluid of interest,

respectively. A DEoS on the ( )00
R

0 T,a ρ  form is then needed for the reference fluid.

In a two-parameter Corresponding States framework, the condition of eq. (4) would

be satisfied by “distorting” the independent variables through the constant scale factors

jh  and jf :
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As already mentioned, this is not sufficient for the real fluids and a further correction

to the former “distortion” has to be introduced by means of the shape factors ( )jjj T,ρθ

and ( )jjj T,ρφ :
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From the fundamental relation, eq. (4), the formalism to obtain any thermodynamic

property can now be developed. Restricting our attention to the more frequently applied

thermodynamic functions, the following hold true:
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3. NEURAL NETWORKS

A new model is proposed here, based on the combination of ECS theory with neural

networks (NN). Neural networks are versatile function approximators. We have chosen

to represent both of the shape factors by means of a single Multi-Layer Feedforward

Network  (MLFN) with 2 outputs, i.e. the shape factor functions, eqs. (7,8), since these

take effect simultaneously, distorting the independent variables that enter the reference



fluid DEoS, eq. (4). The NN are used here to represent the shape factors ( )jjjj ,T ρϑϑ =

and ( )jjjj ,T ρφφ =  as functions of the independent variables ( )jjT ρ, .

Fig. 1 shows the general architecture of a three-layer Feedforward Neural Network in

which the two values of the input layer, U1 and U2, represent the independent

thermodynamic variables, each related to reduced temperature and reduced density. The

two values of the output layer, S1 and S2, represent the shape factors ( )jjjj ,T ρϑϑ =

and ( )jjjj ,T ρφφ = . For the sake of neural network generalization, both input and

output values are compressed here within the same range 0.05÷0.95. The transfer

function used here is a sigmoid function of the form:

( ) x2e1
1

xf βα −+
= (18)

Two parameters have been applied in eq. (18) to make the function’s behavior more

flexible: α changes the activation span and β determines the steepness of the sigmoid

function. The neural equation has some parameters set at the following values:
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In our case it is:

( ) ( ) ( )jj,rj2jj,rj1j
c

j2j,r1 ,TW,TWVTV δφδϑρρδ =====

The following parameters have to be defined according to the specific problem. J is

the number of neurons in the hidden layer and, in our case, it was found that 7 was an

ideal compromise between computation speed and accuracy of the resulting function.

Vmin,i and Vmax,i are the limits of the independent input variables for the training set;

Wmin,k and Wmax,k are the limit values of the shape factors for their generalization that, in

this case, were set between 0.8 and 1.2. Due to the general form of the MLFN selected

for application to the present problem, Fig. 1, the NN weighting factors are 21 for the

first matrix ijw  and 16 for the second matrix jkw , for a total of 37 weighting factors.

The values of the weighting factor matrixes, ijw  and jkw , are the ECS-NN EoS

parameters, i.e. the unknowns of the proposed EoS which have to be obtained

individually for each fluid of interest through an optimization procedure [14].

4. MLFN FUNCTION APPROXIMATOR TESTING

First we verified the ability of this model to approximate the fundamental

thermodynamic function ( )jj
R
j ,Ta ρ  of one of the fluids considered. We selected R134a

as the reference fluid and chose to approximate the ( )jj
R
j ,Ta ρ  DEoS function of R32.



We generated ( )jj
R
j ,Ta ρ  data from the R32 DEoS in vapor, liquid and supercritical

zones, as specified in section 2, and then trained the network with said data. The

objective function assumed was:
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The ( )jj
R
j ,Ta ρ  ECS-NN EoS obtained was tested against the above validation set,

demonstrating that the original data were globally approximated with an AAD of less

than 0.3 %. on the Ra  values. The model can thus approximate the fundamental

thermodynamic function ( )jj
R
j ,Ta ρ  to a very good degree, even for the most difficult

fluid to represent among those considered here, as explained below.

5. REGRESSION OF A MLFN ON GENERATED DENSITY DATA

Neural shape factors can be determined not only from ( )jj
R
j ,Ta ρ  data, but also from

any kind of thermodynamic value, providing the appropriate ECS identity is given, e.g.

eqs. (4) and eq. (9) through (13). We implemented the regression of PρT data in the

three zones and on the saturation line. We used a DEoS to generate a set of PρT points

in the vapor, liquid and supercritical zones and on the saturation line. This training set

counts approximately 600 points in the 3 zones and is described in section 2. For the

bulk-phase regression we considered the following objective function:
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where ( )calcR
jZ is given by eq. (9), while at saturation a second objective function was

considered:

( ) ( )[ ]∑
=

−=
n

1i

2sv

ij
sl

ij3,ob lnln
n
1f ϕϕ (27)

where jϕln is given by eq. (28) combined with eq. (13):

Zlngln R −=ϕ (28)

The EoS parameter optimization process was developed using an overall objective

function which was selected as a linear combination of the two former functions, eqs.

(26,27):

3,ob2,oboverall,ob f1.0f9.0f ⋅+⋅= (29)

After training the network, we tested the model’s ability to reproduce the

fundamental thermodynamic function ( )jj
R
j ,Ta ρ , and its first partial derivatives related

to ( )jj
R
j ,TZ ρ  and ( )jj

R
j ,Tu ρ . The results are shown in Table 3. Looking at the case of

R32, which was formerly studied for the ( )jj
R
j ,Ta ρ  function approximation, its

weighted average error deviation for the three zones was 0.4. This figure is only slightly

higher than the 0.3 of the former case, so the ECS-NN EoS can be trained on a derived

quantity, such as density, without any substantial loss of accuracy on the fundamental

surface ( )jj
R
j ,Ta ρ . The Ru  function, which is related to Ra  through the temperature

first derivative of the shape factors, eqs. (10,14,16), can also be represented well.

We then tested the model for the prediction of ( )jjj P,TZ , ( )jj
R
j P,Ta , ( )jj

R
j P,Tu ,

( )jj
R
j P,Th , ( )jj

R
j P,Ts , ( )jj

R
j P,Tg  and ( )jjj P,Tlnϕ . An inversion is always needed for

practical uses, due to the default choice of P,T  as independent variables. The different



choice of independent variables in this second case demands an iterative procedure to

find a solution for ( )jjj PT ,ρ . The results of the validation study are shown in Table 4.

The model volumetric accuracy can be evaluated through the ( )jjj P,TZ  function; the

AAD achieved is comparable with the corresponding value of a Schmidt-Wagner

multiparameter DEoS. The residual functions are also well represented, with Rs

deviating in the vapor phase at a maximum of 4.15% with respect to a DEoS, whose

error deviation for this function (and for some others) is unknown. It is worth

emphasizing that the upper limit of the liquid phase was globally less than 1%.

Finally, as proof of its consistency, saturation pressures and saturated liquid and

vapor densities were calculated from the model through the VLE condition svsl ϕϕ =  on

the saturation line. The results are presented in Table 5. These three values have to be

considered as the residual deviation errors for the final EoS, because all three were used

in the minimization objective function.

6. REGRESSION OF A MLFN ON DATA FROM A PREDICTIVE

VOLUMETRIC MODEL

In this case, the ECS-NN EoS is trained on density data generated with a volumetric

model previously developed by the Authors [15,16,17]. The volumetric model enables

the predictive generation of approximate PρT data, on which our ECS model was

subsequently trained. Since the volumetric model needs no more than one experimental

saturated liquid density value, the great advantage of this approach is predictivity. The

method for developing this model is quite similar to the one described in the former

case for “exact” density data. As reference fluids R12 and R134a were selected.



We compared the performance of our ECS-NN model, trained on data generated

from the density model, with that of the Huber-Ely ECS model [1]. Both models aim for

predictivity, though the latter also requires a saturated liquid volume correlation.

The validation results for our model are shown in Table 6. Because the density data

used to train the model are less accurate than in the previous case, a certain drop in

precision with respect to the former case is inevitable. This is evident for the

supercritical zone in general and particularly for R32, which is always the most difficult

fluid to reproduce. The volumetric precision is very good in vapor and liquid phases,

with average AAD lower than 0.3 and 0.6 % respectively, but in the supercritical zone it

rises over 2.5 %. Generally speaking, the results obtained for the various residual

potential functions vary from fluid to fluid and also from one zone to another. The

functions’ AAD in the liquid zone are around 1 %, while the AAD for the supercritical

and vapor zones come between 1 % and 4 %, with only one case exceeding said values,

i.e. Rs  in the vapor phase, where an AAD of 7.8 % is reached. The validation results of

the ECS-NN model on the saturation line are shown in Tab. 7; also in this case the

prediction accuracy is worse with error deviations about two times greater. The

validation of the Huber-Ely [1] ECS model is shown in Tab. 8. The AAD on PρT data is

around 0.5 % for the liquid, and less than 1.5 % for vapor and supercritical zones. The

residual potential functions AAD in the liquid zone are usually below 1.5 %, while the

AAD of the vapour phase are significantly greater, generally between 8 and 15 %, with

the highest value, for Rs , reaching nearly 20 % as mean value. In the supercritical zone

the AAD values are usually limited to 5 % at maximum. Results of the validation test

along the saturation line are shown in Tab. 9; the results for density are in particular

worse.



7. CONCLUSIONS

A new method for determining shape factors in the Extended Corresponding States

modelling framework is proposed. The approach requires an a priori analytical form for

the shape factor functions and for this the Artificial Neural Networks (ANN), as very

versatile function approximators, have been applied. The shape factors are represented

through ANN as functions of the two independent variables temperature and density.

The ECS-NN EoS parameters are determined trough a minimisation procedure. A

number of halogenated alkanes for which DEoS are presently available was assumed for

the study. The ECS-NN EoS capability in representing PρT data in vapor, liquid and

supercritical zones was verified with an AAD between 0.026 and 0.5 %, which is

comparable to the analogous value of a multiparameters DEoS. The accuracy of the

model, trained on PρT data, in representing residual potential functions was also tested

obtaining AAD values generally less than 0.8 % for liquid and less than 4 % for vapor

and supercritical zones. The ECS-NN EoS has been afterwards trained on PρT data

generated through an original predictive volumetric model requiring a single saturated

liquid density value as input for each interest fluid. This makes the whole method

predictive, although with an expected slight decrease of accuracy. The AAD values on

PρT data are well less than 1 % in liquid and vapor, while in the supercritical zone they

reach 2.5 %. The AAD on residual potential functions are often under 1% for liquid and

generally under 4 % for vapor and supercritical zone. The comparison of the present

predictive ECS-NN model with the Huber-Ely one [1] shows that in the liquid and

supercritical zones the results are comparable, though not uniform for the second model,

while the second model presents a marked worsening in the representation of the vapor

zone residual potential functions.



The proposed model allows then to predictively obtain an ECS model, with locally

defined individual shape factors, which shows a good and equilibrated performance.
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Table 1: Dedicated equations of state (DEoS) and range of validity for the HA fluids
considered.

Fluid Formula Tr min. Tr max Pr max Ref.
R11 CCl3F 0.34 1.33 6.8 [7]
R12 CCl2F2 0.45 1.56 17.0 [8]
R22 CHClF2 0.31 1.49 12.0 [9]
R32 CH2F2 0.45 1.43 10.3 [10]
R123 CHCl2CF3 0.36 1.15 10.9 [11]
R125 CHF2CF3 0.51 1.47 18.7 [10]
R134a CH2FCF3 0.45 1.34 17.3 [12]
R152a CH3CHF2 0.40 1.13 6.7 [13]

Table 2: Training and validation grid steps for rT  and rP .

Vapor Liquid Supercrit.
training 0.02 0.02 0.02

rT  step
validation 0.01 0.01 0.01

training 0.05 0.5 0.5
rP  step validation 0.01 0.1 0.1

Table 3: Residual functions prediction accuracy without inversion for ECS-NN
trained on data generated from DEoS.

AAD %
Property Fluid vapor liquid supercrit.

R11 0.967 0.157 1.593
R22 0.445 0.054 0.456
R32 1.071 0.088 0.383

Ra R123 0.520 0.236 0.197

R125 0.603 0.237 2.032
R152a 0.935 0.142 0.525

avg 0.757 0.151 0.982
R11 1.395 0.429 2.069
R22 0.817 0.258 1.444
R32 0.980 0.223 1.431

RZ R123 0.849 0.287 0.986

R125 0.958 0.371 1.772
R152a 0.983 0.321 0.950

avg 1.000 0.315 1.555
R11 3.474 0.619 2.867
R22 2.220 0.238 0.662
R32 2.309 0.328 1.577

Ru R123 1.726 0.482 0.589

R125 3.488 0.465 4.709
R152a 2.179 0.259 0.2943

avg 2.571 0.398 2.103
Overall 1.443 0.288 1.547



Table 4. Residual functions prediction accuracy with inversion for ECS-NN trained on data generated from DeoS.

Z
Ra Ru Rh Rs Rg ϕln

Fluid vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup.
R11 0.27 0.05 0.41 1.28 0.14 1.83 3.72 0.65 2.83 2.87 0.60 1.99 5.89 1.22 5.02 1.29 0.12 1.38 1.06 0.54 1.81
R22 0.11 0.03 0.20 0.55 0.05 0.56 2.32 0.25 0.65 1.83 0.23 0.47 3.57 0.46 1.19 0.59 0.04 0.43 0.48 0.26 0.52
R32 0.37 0.14 0.37 1.33 0.13 0.52 2.64 0.36 1.75 2.25 0.33 1.38 3.49 0.63 2.71 1.25 0.11 0.53 1.15 0.26 0.42

R123 0.18 0.03 0.38 0.69 0.24 0.43 1.90 0.49 0.83 1.57 0.45 0.72 2.69 0.82 1.12 0.71 0.16 0.38 0.58 0.73 0.25
R125 0.20 0.03 0.39 0.75 0.23 2.07 3.62 0.45 4.81 2.72 0.42 3.37 5.94 0.78 9.65 0.74 0.19 1.49 0.65 0.44 2.22
R152a 0.35 0.05 0.50 1.21 0.14 0.74 2.41 0.28 0.48 2.03 0.26 0.47 3.15 0.58 0.51 1.18 0.11 0.62 1.01 0.24 0.69
Avg 0.24 0.06 0.36 0.97 0.15 1.13 2.78 0.41 2.19 2.21 0.38 1.59 4.15 0.75 3.98 0.96 0.12 0.88 0.82 0.41 1.11

Table 6. Residual functions prediction accuracy with inversion for ECS-NN trained on data generated from density model.

Z
Ra Ru Rh Rs Rg ϕln

Fluid vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup.
R11 0.18 0.22 0.85 0.97 0.41 1.55 4.80 0.71 2.37 3.60 0.66 1.93 8.17 1.31 3.79 1.04 0.35 1.48 0.88 1.44 1.36
R22 0.15 0.18 0.78 0.49 0.08 1.08 1.69 0.27 0.55 1.25 0.25 0.41 2.96 0.46 1.33 0.49 0.09 1.18 0.43 0.48 0.44
R32 0.85 1.59 7.31 3.08 1.26 12.3 10.5 2.96 3.83 7.75 2.63 4.61 17.1 5.98 5.18 3.23 1.07 11.7 2.59 2.00 10.0

R123 0.12 0.30 0.80 0.80 0.27 0.85 3.08 0.42 0.64 2.45 0.39 0.62 4.60 0.83 0.73 0.81 0.25 0.82 0.74 0.95 0.51
R125 0.15 0.36 2.04 1.79 0.39 3.44 3.20 0.69 5.31 2.37 0.61 4.24 5.45 1.29 9.67 1.62 0.35 3.53 1.78 0.63 2.79
R152a 0.33 0.70 2.60 1.94 0.50 2.74 6.02 0.96 1.51 4.85 0.87 1.34 8.49 1.72 2.41 1.91 0.41 2.53 1.78 0.62 1.76
Avg 0.27 0.56 2.55 1.50 0.49 4.10 4.87 1.00 2.67 3.70 0.90 2.47 7.77 1.93 4.38 1.50 0.42 3.98 1.36 1.02 3.21



Table 8. Residual functions prediction accuracy of the conventional ECS model (Huber-Ely, 1994).

Z
Ra Ru Rh Rs Rg ϕln

Fluid vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup. vap. liq. sup.
R11 1.67 0.65 1.13 12.5 0.96 2.95 23.3 1.40 3.46 19.5 1.32 3.07 32.6 2.75 4.41 11.9 0.87 2.64 11.6 2.92 2.99
R22 0.75 0.21 0.45 5.31 0.32 0.97 8.91 0.64 1.78 7.61 0.60 1.46 11.4 1.17 2.36 5.06 0.29 0.90 4.91 1.36 1.03
R32 2.57 0.96 2.40 14.7 1.02 6.19 20.3 1.02 7.07 18.6 0.89 6.49 23.8 2.67 8.62 14.1 0.92 5.57 13.6 1.56 5.81
R123 0.80 0.51 0.81 14.7 1.02 6.19 10.8 0.73 2.71 9.10 0.69 2.16 14.2 1.28 3.70 5.36 0.46 1.15 5.10 1.33 1.10
R125 0.91 0.50 1.19 5.30 0.46 2.50 15.8 0.90 7.99 12.6 0.84 5.82 23.5 1.60 14.9 5.28 0.45 2.23 4.72 0.72 1.67
R152a 1.14 0.45 0.92 7.03 0.70 1.69 10.5 1.35 1.85 9.47 1.25 1.76 12.7 1.97 2.18 6.72 0.59 1.49 6.51 1.45 1.90
Avg 1.14 0.45 0.92 8.41 0.66 2.85 14.1 1.01 4.59 12.8 0.93 3.82 19.8 1.91 6.78 8.07 0.60 2.57 7.75 1.56 2.84

Table 5. Prediction accuracy at
saturation for ECS-NN trained on
data from DEoS.

Table 7. Prediction accuracy at
saturation for ECS-NN trained on data
from density model.

Table 9. Prediction accuracy at
saturation for conventional ECS
model (Huber-Ely, 1994).

Fluid Sat. vap.
pressure

Sat. liq.
density

Sat. vap.
density

Fluid Sat. vap.
pressure

Sat. liq.
density

Sat. vap.
density

Fluid Sat. vap.
pressure

Sat. liq.
density

Sat. vap.
density

R11 0.650 0.189 1.162 R11 1.086 1.876 1.716 R11 1.079 3.355 5.418
R22 0.239 0.098 0.700 R22 0.341 0.212 0.674 R22 0.647 2.384 4.064
R32 0.432 1.155 1.392 R32 2.984 0.312 4.728 R32 0.661 4.438 7.445
R123 0.865 0.120 1.415 R123 0.869 0.128 1.381 R123 0.701 2.835 4.739
R125 0.993 0.147 1.155 R125 1.34 0.144 1.890 R125 1.705 2.407 3.151
R152a 0.651 0.536 1.203 R152a 1.351 0.733 2.109 R152a 3.032 3.643 7.54
Avg 0.638 0.374 1.171 Avg 1.325 0.567 2.083 Avg 1.304 3.177 5.392



Figure captions

Fig. 1. Three layers Feed-Forward Neural Network architecture.

Fig. 2. Percent error deviation on ( )jj
R
ja δτ ,  for the interest fluid R152a. ECS-NN

model trained on data generated from DEoS.

Fig. 3. Shape factor ( )jjjj δτϑϑ ,=  for the interest fluid R152a. ECS-NN model trained

on data generated from DEoS.

Fig. 4. Shape factor ( )jjjj δτφφ ,=  for the interest fluid R152a. ECS-NN model trained

on data generated from DEoS.
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